By Rational Root Theorem, all rational roots of a polynomial are in the form fracpq, where p divides the constant term -8 and q divides the leading coefficient 1. Danh mục all candidates fracpq.

Bạn đang xem: X3


Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^3+2x^2-4x-8 by x-2 to get x^2+4x+4. Solve the equation where the result equals khổng lồ 0.
All equations of the form ax^2+bx+c=0 can be solved using the quadratic formula: frac-b±sqrtb^2-4ac2a. Substitute 1 for a, 4 for b, & 4 for c in the quadratic formula.
*

x3-2x2-4x-8=0 One solution was found : x ≓ 3.678573489 Step by step solution : Step 1 :Equation at the over of step 1 : (((x3) - 2x2) - 4x) - 8 = 0 Step 2 :Checking for ...
x4-x3+2x2-4x-8=0 Four solutions were found : x = 2 x = -1 x= 0.0000 - 2.0000 i x= 0.0000 + 2.0000 i Step by step solution : Step 1 :Equation at the kết thúc of step 1 : ...
x3+2x2-9x-18=0 Three solutions were found : x = -2 x = 3 x = -3 Step by step solution : Step 1 :Equation at the end of step 1 : (((x3) + 2x2) - 9x) - 18 = 0 Step 2 :Checking for a ...
displaystyleleft(x-1 ight)left(x+1 ight)left(4x+1 ight)=0displaystylex=1,displaystyle-1,displaystyle-frac14 Explanation: displaystyle4x^3+x^2-4x-1=0 ...
How vày you use synthetic substitution khổng lồ evaluate f(2) for displaystylefleft(x ight)=x^3+2x^2-4x-5 ?
https://socratic.org/questions/how-do-you-use-synthetic-substitution-to-evaluate-f-2-for-f-x-x-3-2x-2-4x-5
displaystylefleft(2 ight)=3 Explanation: displaystylefleft(x ight)=x^3+2x^2-4x-5 When the problem asks khổng lồ evaluate f(2), simply substitute in 2 ...
2x3+2x2-40x=0 Three solutions were found : x = 4 x = -5 x = 0 Step by step solution : Step 1 :Equation at the end of step 1 : ((2 • (x3)) + 2x2) - 40x = 0 Step 2 :Equation at the end ...
More Items
*
*

*
*
*

By Rational Root Theorem, all rational roots of a polynomial are in the size fracpq, where p. Divides the constant term -8 & q divides the leading coefficient 1. Danh mục all candidates fracpq.
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^3+2x^2-4x-8 by x-2 to lớn get x^2+4x+4. Solve the equation where the result equals lớn 0.

Xem thêm: Tổng Hợp Các Công Thức Toán Hình Lớp 10 Đầy Đủ Nhất, Tổng Hợp Các Công Thức Toán Lớp 10 Quan Trọng


All equations of the form ax^2+bx+c=0 can be solved using the quadratic formula: frac-b±sqrtb^2-4ac2a. Substitute 1 for a, 4 for b, & 4 for c in the quadratic formula.
left< eginarray l l 2 & 3 \ 5 & 4 endarray ight> left< eginarray l l l 2 và 0 & 3 \ -1 và 1 & 5 endarray ight>
*
*

*
*

EnglishDeutschEspañolFrançaisItalianoPortuguêsРусский简体中文繁體中文Bahasa MelayuBahasa Indonesiaالعربية日本語TürkçePolskiעבריתČeštinaNederlandsMagyar Nyelv한국어SlovenčinaไทยελληνικάRomânăTiếng Việtहिन्दीঅসমীয়াবাংলাગુજરાતીಕನ್ನಡकोंकणीമലയാളംमराठीଓଡ଼ିଆਪੰਜਾਬੀதமிழ்తెలుగు